Voice Agent

A natural realtime voice experience, ready for production use
Voice Agent background
Voice Agent

Input

textaudioimagesvideo

Output

textaudioimagesvideo

Use Cases

Language LearningCustomer SupportAI CompanionGamesFitness TrainerSocial Media

Type

full-stack appcallable endpoint

SDK

Node.js

README.md

GitHub

Voice Agent Application

MIT License Powered by Inworld AI Documentation Model Providers

This application demonstrates a simple chat interface with an AI agent that can respond to text and voice inputs, powered by Inworld AI Runtime.

Prerequisites

  • Node.js 20 or higher
  • Assembly.AI API key (required for speech-to-text functionality)
  • Inworld API key (required)

Get Started

Step 1: Clone the Repository

git clone https://github.com/inworld-ai/voice-agent-node
cd voice-agent-node

Step 2: Configure Server Environment Variables

Copy server/.env-sample to server/.env and fill all required variables. Some variables are optional and can be left empty. In this case default values will be used.

Get your API key from the Inworld Portal.

Step 3: Configure Client Environment Variables (Optional)

The client supports optional environment variables to customize its behavior. Create a .env file in the client directory if you want to override defaults:

  • VITE_ENABLE_LATENCY_REPORTING - Set to true to enable latency reporting in the UI (shows latency chart and latency badges on agent messages). Default: false
  • VITE_APP_PORT - Server port to connect to. Default: 4000
  • VITE_APP_LOAD_URL - Custom load endpoint URL
  • VITE_APP_UNLOAD_URL - Custom unload endpoint URL
  • VITE_APP_SESSION_URL - Custom session WebSocket URL

Step 4: Install Dependencies and Run

Install dependencies for both server and client:

# Install server dependencies
cd server
npm install

# Start the server
npm start

The server will start on port 4000.

# Install client dependencies
cd ../client
npm install
npm start

The client will start on port 3000 and should automatically open in your default browser. It's possible that port 3000 is already in use, so the next available port will be used.

Step 5: Configure and Use the Application

  1. Define the agent settings:

    • Enter the agent system prompt
    • Select an Speech to Text service
    • Click "Create Agent"
  2. Interact with the agent:

    • For voice input, click the microphone icon to unmute yourself. Click again to mute yourself.
    • For text input, enter text in the input field and press Enter to send it to the agent

Repo Structure

voice-agent-node/
├── server/                       # Backend handling Inworld's LLM, STT, and TTS services
│   ├── components/
│   │   ├── graph.ts              # Main graph-based pipeline orchestration
│   │   ├── stt_graph.ts          # Speech-to-text graph configuration
│   │   ├── message_handler.ts    # WebSocket message handling
│   │   ├── audio_handler.ts      # Audio stream processing
│   │   └── nodes/                # Graph node implementations (STT, LLM, TTS processing)
│   ├── models/
│   │   └── silero_vad.onnx       # VAD model for voice activity detection
│   ├── index.ts                  # Server entry point
│   ├── package.json
│   └── tsconfig.json
├── client/                       # Frontend React application
│   ├── src/
│   │   ├── app/                  # UI components (chat, configuration, shared components)
│   │   ├── App.tsx
│   │   └── index.tsx
│   ├── public/
│   ├── package.json
│   └── vite.config.mts
├── constants.ts
└── LICENSE

Architecture

The voice agent server uses Inworld's Graph Framework with two main processing pipelines:

Pipeline Overview

flowchart TB
    subgraph AUDIO["AUDIO INPUT PIPELINE"]
        AudioInput[AudioInput]
        
        subgraph OPT1["Assembly.AI STT Pipeline"]
            AssemblyAI[AssemblyAI STT]
            TranscriptExtractor[TranscriptExtractor]
            SpeechNotif1[SpeechCompleteNotifier<br/>terminal node]
            
            AssemblyAI -->|interaction_complete| TranscriptExtractor
            AssemblyAI -->|interaction_complete| SpeechNotif1
            AssemblyAI -->|stream_exhausted=false<br/>loop| AssemblyAI
        end
        
        AudioInput --> OPT1
        
        TranscriptExtractor --> InteractionQueue
    end
    
    subgraph TEXT["TEXT PROCESSING & TTS PIPELINE"]
        TextInput[TextInput]
        DialogPrompt[DialogPromptBuilder]
        LLM[LLM]
        TextChunk[TextChunking]
        TextAgg[TextAggregator]
        TTS[TTS<br/>end]
        StateUpdate[StateUpdate]
        
        TextInput --> DialogPrompt
        DialogPrompt --> LLM
        LLM --> TextChunk
        LLM --> TextAgg
        TextChunk --> TTS
        TextAgg --> StateUpdate
        StateUpdate -.->|loop optional| InteractionQueue
    end
    
    InteractionQueue -->|text.length>0| TextInput

    style SpeechNotif1 fill:#f9f,stroke:#333,stroke-width:2px
    style TTS fill:#9f9,stroke:#333,stroke-width:2px

STT Provider

The server uses Assembly.AI as the Speech-to-Text provider, which provides high accuracy with built-in speech segmentation.

Troubleshooting

  • If you encounter connection issues, ensure both server and client are running. Server should be running on port 4000 and client can be running on port 3000 or any other port.
  • Check that your API keys are valid and properly set in the .env file:
    • INWORLD_API_KEY - Required for Inworld services
    • ASSEMBLY_AI_API_KEY - Required for speech-to-text functionality
  • For voice input issues, ensure your browser has microphone permissions.

Bug Reports: GitHub Issues

General Questions: For general inquiries and support, please email us at support@inworld.ai

Contributing

  1. Fork the repository
  2. Create a feature branch: git checkout -b feature/amazing-feature
  3. Commit changes: git commit -m 'Add amazing feature'
  4. Push to branch: git push origin feature/amazing-feature
  5. Open a Pull Request

License

This project is licensed under the MIT License - see the LICENSE file for details.

Copyright © 2021-2025 Inworld AI